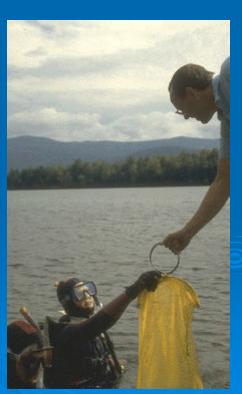
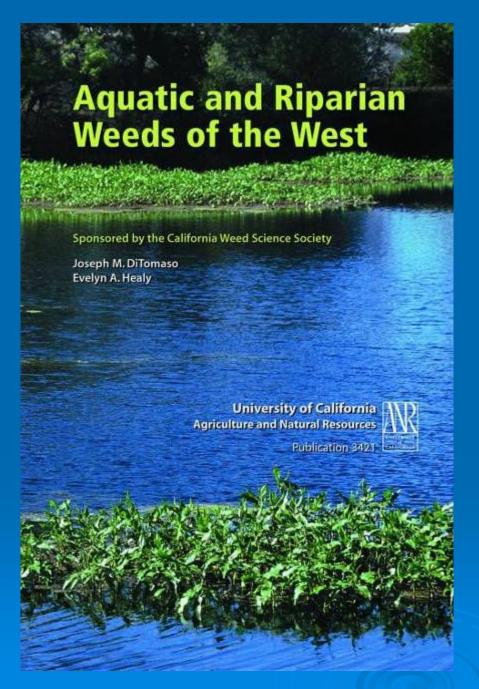
Aquatic Weed & Algae Control

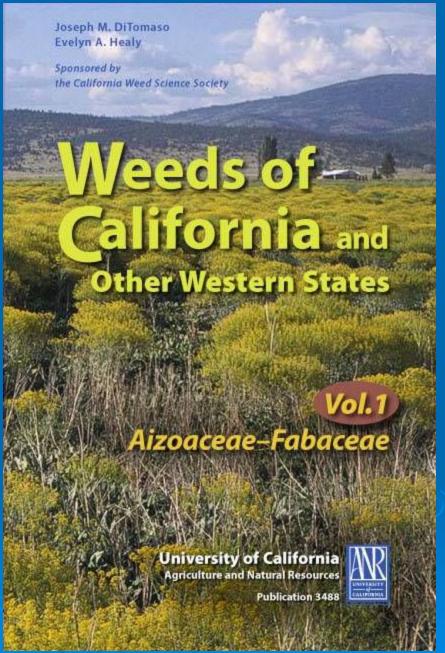
Aquatic Systems: Multiple uses

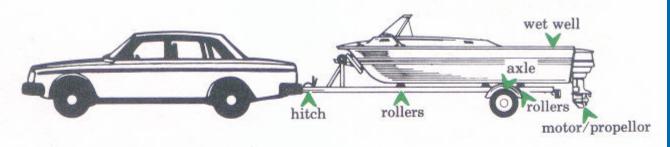
- Fishing
- Swimming
- Boating
- Aesthetics
- Drinking Water

- Wildlife
- Flood Control
- Irrigation
- Hydroelectric

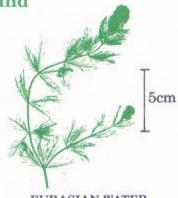

Aquatic Plant Management Plan


- > Prevention
- > Assessment
- Site-specific management
- > Evaluation
- > Monitoring
- > Education

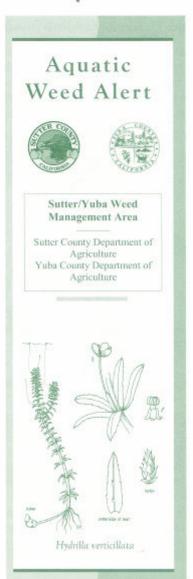



Aquatic Plant Management

- **Prevention**
 - **❖**Educational signs at boat launches, marinas
 - **❖**Volunteer Plant Survey to watch for invasive plants in pond
- **❖**Identify plant species
- **Site Considerations**
- **❖Select Management Approach**mechanical
 biological
 herbicides
- Monitor / Follow Up Application



▲ Locations where aquatic weeds are often found


Boaters can help prevent the spread of Eurasian water milfoil by removing all aquatic weeds from **trailer**, **boat**, **motor/propellor** and **anchors** before launching and after leaving water.

Special care should be taken to remove aquatic weeds from the wet wells of trailered boats and the interior of cartop boats and canoes.

EURASIAN WATER MILFOIL FRAGMENT

80447/1

STOP Spread of Eurasian Water Milfoil

Eurasian water milfoil is an aquatic weed which interferes with boating, swimming, waterskiing, and fishing in southern British Columbia and on Vancouver Island.

Fragments of Eurasian water milfoil may survive if transported on boating equipment and can initiate new colonies if introduced to noninfested lakes. It has not yet been found north of Shuswap Lake and in most of the Kootenay Regions.

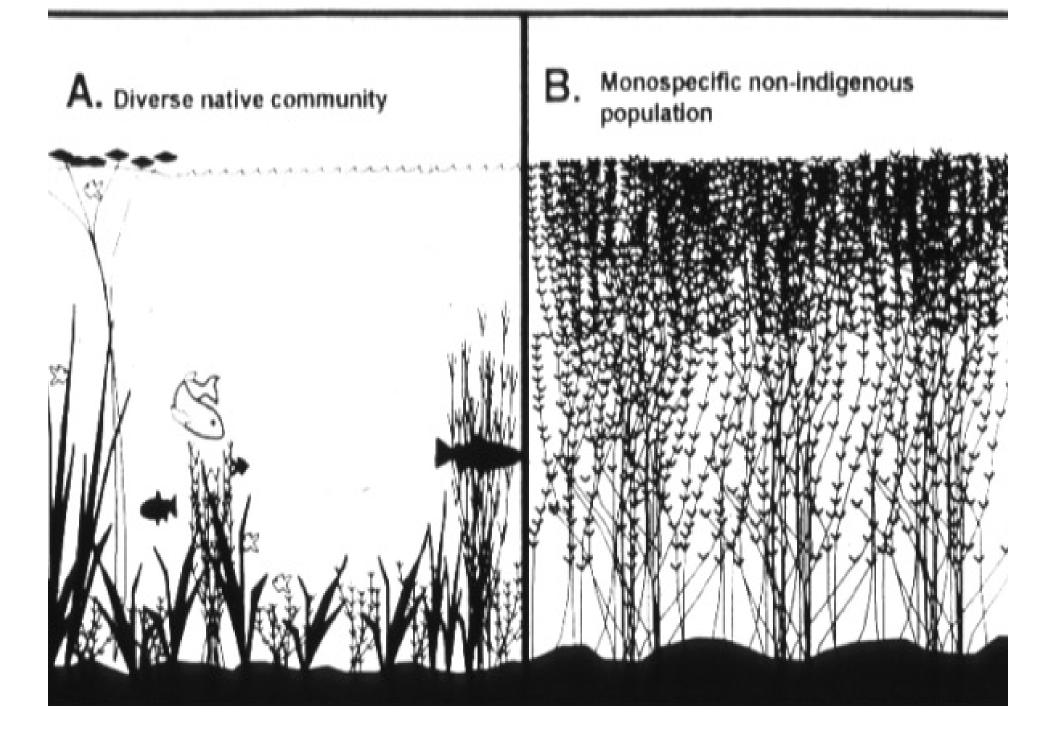
Province of British Columbia Ministry of Environment

Do not transport aquatic weeds!

Prevention

Eliminate shallow areas during construction > 3 feet deep, except in designated swimming areas.

Prevent nutrients from entering the pond
point sources
use 10 - 20 foot wide grass buffer strips
fertilize areas adjacent to pond sparingly
prevent livestock from entering the pond directly
reduce the number of waterfowl


Management Goals

Management approach will depend on your goals for the site:

Site Considerations

- Pond Dimensions
- ❖ Average Depth
- Inflows / Outflows
- Location in the Floodplain
- Types of Fish
- **❖**Water Uses

Costs of aquatic weed management

- Ranges from \$500 to \$3,000 per acre
- Ranges from \$500 to \$5,000 per mile of canal

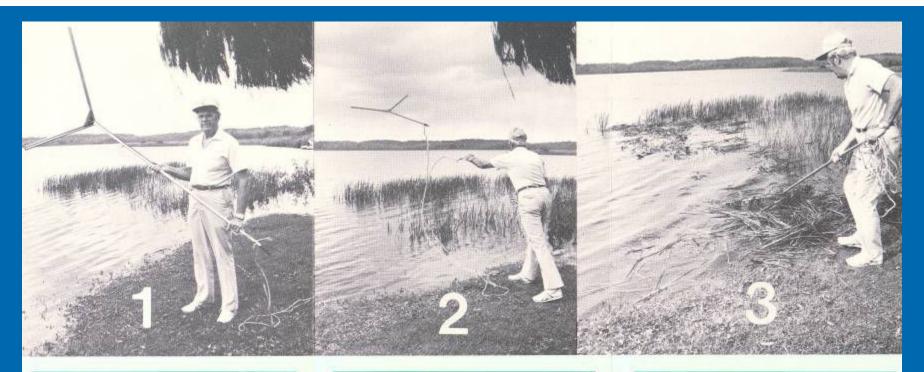
What are the costs associated with?

- Consumable Materials (e.g. herbicides, fuel)
- **Equipment** (sprayers, harvesters, trucks, boats, safety gear)
- Personnel (salaries, training, insurance, benefits)
- Regulatory: NPDES-monitoring and compliance (sampling equipment, training, analysis, documentation, record storage)

Aquatic Plant Management Approaches

- Mechanical Control
- Cultural Control
- Biological Control
- Chemical Control

Mechanical Control



- Hand pulling and raking
- Cutting and harvesting
- Shredding
- Dredging
- Chaining
- Diver-operated suction harvesting
- Rotovating

Hand operated tools

HANDY MARKETING CO.

Dear Friend:

If you have a water weed problem, you already know what a job it is keeping the weed growth under control. Water weeds can greatly affect the use of your water property by inhibiting swimming, fishing and boating. Uncontrolled water weeds can also be an unsightly mess.

The AQUA WEED CUTTER will not only solve your water weed problems, but also help you do your part in preserving our nation's most valuable resource. If for any reason you are not satisfied in 30 days with the operation of the AQUA WEED CUTTER, return it to wherever you purchased it for a full refund. This is a no risk offer on your part.

The AQUA WEED CUTTER is manufactured with the highest degree of workmanship and the highest quality of materials. The AQUA WEED CUTTER is 100% manufactured in the United States. Zinc plating and the stainless steel resharpenable blades offer a high degree of corrosion resistance. We are so sure of the quality of materials and workmanship that goes into each AQUA WEED CUTTER that we have recently extended the limited warranty period from 90 days to 1 year.

Sincerely,
On Breckenridge,
President

SATISFIED CUSTOMERS

"Does a fantastic job - I figured I cleared more weeds in two hours than I've previously been able to in a whole summer." -South Haven, MI

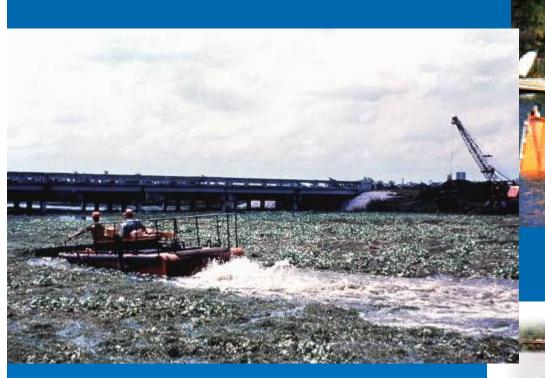
"My friend brought his AWC over to my house and I tried it. I thought it was great and I ordered one. The AWC is effective and easy to use."
-Webster, WI

"I like it very much. It does a very good job. I had to put a longer rope on it because I can throw it farther than the rope would permit. It's nice to be able to cut weeds without getting wet, especially when the water is cold." -Altkin, MN

"Gentlemen, I wish to inform you that your AQUA WEED CUTTER does a very good job and I am pleased. Several of the neighbors have also ordered them."

-Gowen, MI

"We have tried the AQUA WEED CUTTER and find it does an excellent job of cleaning the weeds in our beach, along the long pier and boat docks. We are very satisfied with the product and would recommend it to anyone who has a need."


-Claypool, IN

BEACHES • PONDS & SMALL LAKES CAN BE WEED FREE! SAFE, EASY-TO-USE • HELPS TO CONTROL WATER WEEDS

- Cuts a 48" path up to 20' deep (without operator getting wet!)
- Just throw it out and pull it in from Any Dock or Shore!

Stainless Steel Resharpenable Blades! 30-DAY MONEY BACK GUARANTEE!!

Cutting/Harvesting



Cutting/Harvesting



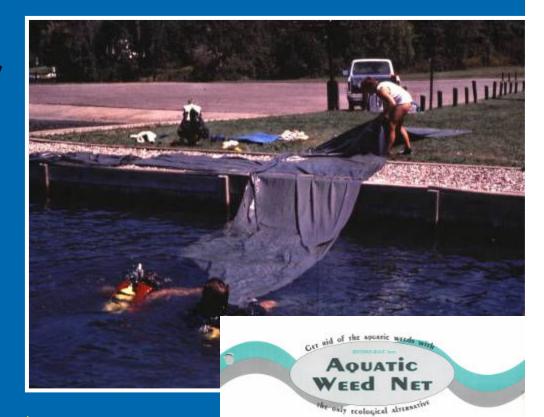
Underwater cutting head

Small fish and invertebrates become trapped in the plant material. The plant material has to be carried to appropriate disposal site.

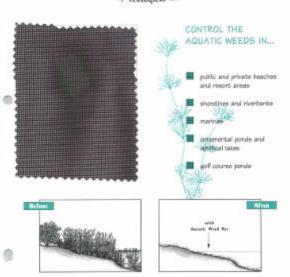
Cultural Control

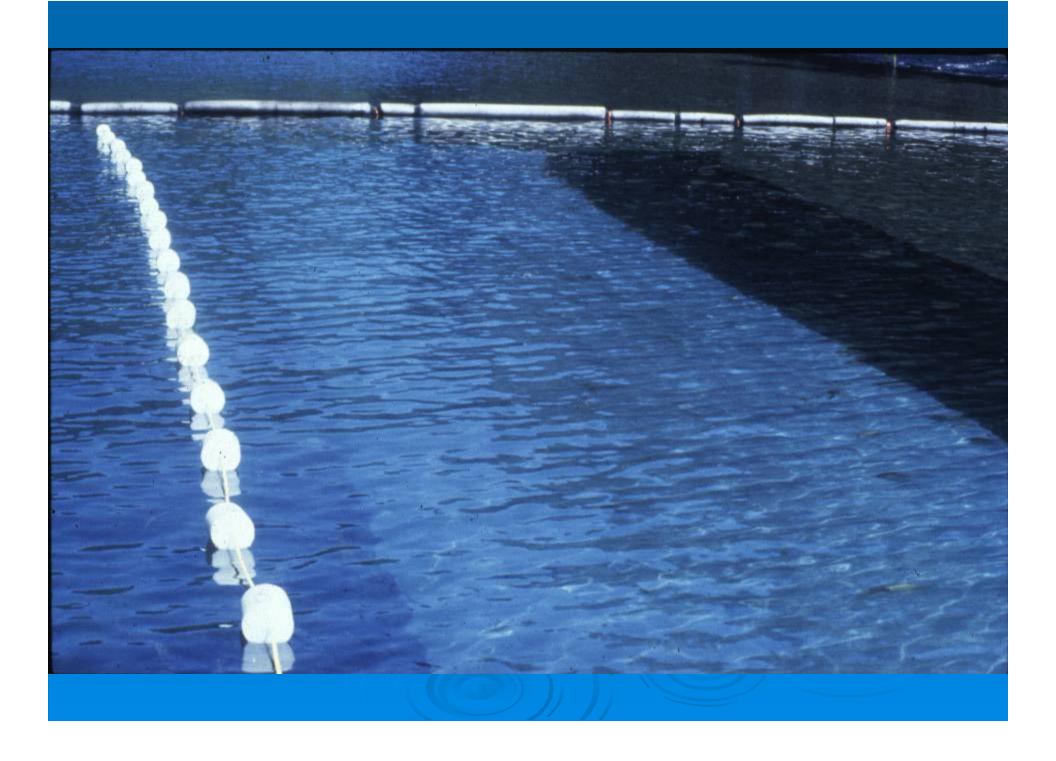
- > Drawdown
- > Benthic Barrier
- > Shading
- > Nutrient Inactivation
- Barley Straw

Drawdown


- Effective on some species, and inexpensive
- Damage to other non-target organisms
- Can impact human use of water
- Need water controls

Water Level Drawdown


- Coontail, Egeria, Eurasian watermilfoil,
 Southern Naiad, Water Lily, Robbin's Pondweed
- Alligator weed, Hydrilla, Bushy Pondweed
- Waterhyacinth, Elodea, Cattail


Benthic Barrier

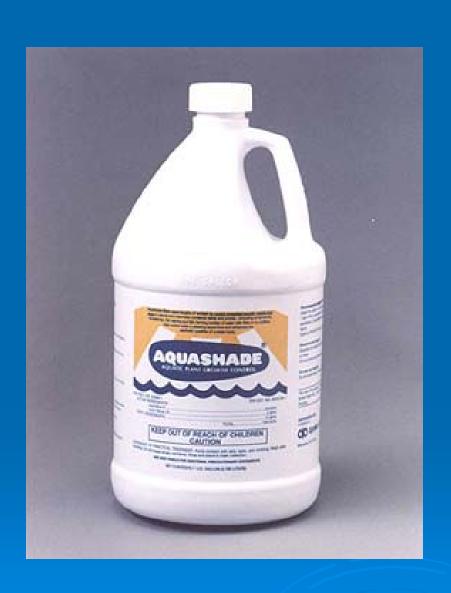
- -Frees areas for immediate use.
- -Last up to 10 years
- -Easy to install in small areas.
- -Prevent new plant growth.if used early in the spring.

- -Not suitable for large-scale (expensive)
- -Must be removed and cleaned in the fall.
- -Too shallow an installation may entangle props.
- -Habitat can be eliminated.
- -Installation may be strenuous especially in deep water.

Barley straw

Light Alteration as a Management Approach

Increase water depth by dredging.


Increase shade from stream banks by planting tall grass, shrubs or trees.

Add nutrients to stimulate algal blooms.

Increase turbidity due to suspended clay.

> Use light absorbing dyes.

(slow water turnover, dilution, apply early in growing season, most effective in clear water, require minimum depths of > 0.5 to 2 m)

Shading

- Water-soluble dye
- Inexpensive
- Discoloration appears artificial

U.S. Pat. No. 4,042,367

EPA Reg. No. 33068-1.

EPA Est. No. 33068-OH-1

AQUASHADE FILTERS WAVE LENGTHS OF SUNLIGHT TO CONTROL UNWANTED AQUATIC WEEDS AND ALGAE IN NATURAL AND MANMADE CONTAINED LAKES AND PONDS INCLUDING ORNAMENTAL RECREATIONAL FIRM REARING & FISH FARMING BODIES OF WATER WITH LITTLE OR NO OUTFLOW
ALSO COLORS WATER & PLEASING AQUI
ENHANCES THE AESTHETIC QUALITIES OF A

ACTIVE INGREDIENTS:

Add Blue 9 . Apid Yellow 23 INERT INGREDIENTS.

KEEP OUT OF REACH OF C

CAUTION

STATEMENT OF PRACTICAL TREATS bould contact with skin, eyes, and clothing. Wash to night reuse empty container. Wrop and place in

DIRECTIONS-FOR USE

It is a violation of Federal law to use the product is a manner inconsistent with its labeling.

GENERAL CLASSIFICATION

WHERE TO APPLY

Natural and manmade contained Ponds, Lakes S Fourtains Industring Onsamental, Reoreasonal, Fish Rearing and Fish Farming Ponds with little or no outliew, Soil Course Ponds and Watering Turf.

Do Not apply directly to sinearro, other natural hodies of water or any body of water not under total control of the user. Do not apply to water that will be used for human consumption.

HOW TO APPLY

Pour from the container near shareline into water. It will mis-Broughout. For an early control, pour onto the ICE in a meter dameter circle. If will met a hole 5 disperse underneath.

WHEN TO APPLY

For beat results, apply before growing season starts, or when growth is on the bottom. Less effective when growth is near serface (2 E.), in first case, hypicate memoral or chemical killing of growth elevatly above surface may be done before AQUASHADE is applied. When using an equation hartiside, below all label instructions, processions and directions for use.

Adolgson of death form depths great Chara, Sien

PRECAU

May be used Do not spply as this will o

RECOMA

ENVIRON

contact burn Do not con

STORAG

Do not reus collection, 5

The use of its protected by: 1,008,688, Fre

NET CONTENTS: 1 GALLON (3.785)

SW 11/92

1-800-558-5106

TRUE BLUE LAKE & POND DYE

TECHNICAL BULLETIN

DESCRIPTION

TRUE BLUE is a dark agua blue adoriera, contoxic liquid formulated to impart an attractive blue coloring to natural and man-made ponds. lakes, fountains and water hazards.

Designed to turn water blue without producing an artificial appearance. TRUE BLUE aids in beautifying parks, corporate campuses, got courses, campgrounds and reterrior ponds.

ACHANTAGES:

- · Non-loxic; Stated by independent agencies
- High reless to high, weightle and other aquatic species.
 True, refunal-inolong color.
- Easy to use Long-lasting
- * Oxforens * Ecotomical
- + Highly concentrated

DIRECTIONS FOR APPLICATION:

Apply TRUE BLUE stands of one galon (3.87L) per four acre feet of water Note: one scre foot is the quantity of water (43,560 cubic feet), that would cover one acres to a cleath of one foot. One gallon of TRUE BLUE will treat up to 1,250,000 gallons of water, depending on water quality.

Recommended application method: TRUE BLUE may be applied with a hand-held pressure sprayer (use caution if windy conditions exist), but can also be powed from a slow-moving book or directly from the container along the shoreline Following application, TRUE BLUE will be slowly dispersed and mixed throughout the entire body of water by wind and water currents.

For bestresults, apply in early spring and through out the season depending on the desired level at color intensity.

TRUE BLUE is available in one gallon containers, packaged six gallons per case.

penggaries.

reaccenties.	
Form Odor	None
Color	Dark blue
Storage Stability	
Cold Stability	Keep above 324
Compsion Factor	
Flashpoint	None
Solubility in Water	Infinite
Boling Point	212°F
pH	5.4
Specific Gravity	1.045
% Votable by Weight:	70-75%
Evaporation Rate	Same as water
Weight per Gallon	8.7 lbs.

IMPORTANT NOTE:

Do NOT apply this product to water intended for human consumption. Do NOT use this product for streams, rivers or other bodies of water not under control of the user Do NOT use in water that has been or will be obtainated.

FIRST AID RECORMATION.

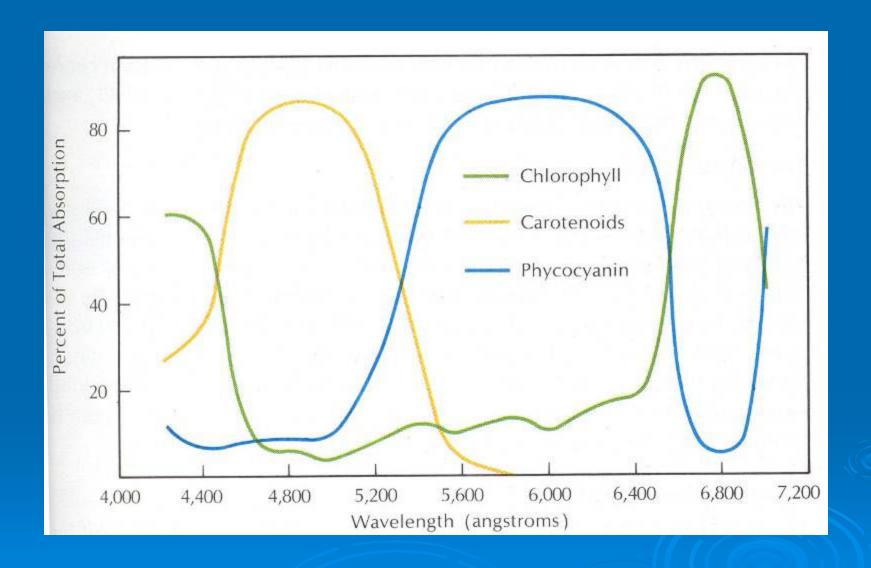
Keep out of reach of children. Do not take internally Avoid contact with ekin, ever, or dothing, if accidentally regested, dink large valunes of vater. Do not induce voniting, I false contact occurs, wash skin with soap and value. If eye contact occurs, flush eyes with water. for lifteen minutes. It initiation pensists, obbain medical attention. Viatorial Safety Clota Sheet available on

STORAGE AND DISPOSAL-

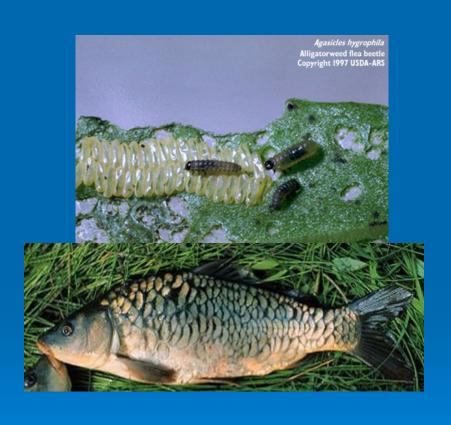
Store above 32°F. Do NOT reuse empty container Dispose of container in a safe manner in accordance with tections, state and local regulations. Do not use product in a mariner inconsistent with labelings.

INVESTMENT INFORMATION:

The information contained in this build in a based on information which is balleted to be sillable. However, Precision Laboratories does not warrant alther expressly or by implication the accuracy thereof. In presenting and publishing this builder, no afterior, has been made to investigate or discuss any patent or trademark situation which must be involved.



YOUR LOCKLOSALER IS



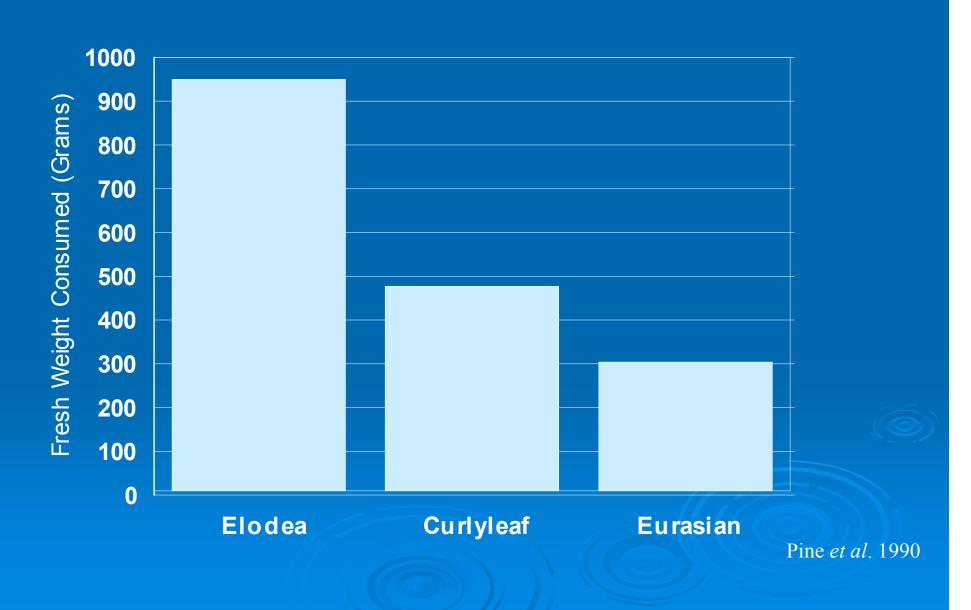
Nutrient Inactivation

- Complex P with
 - Alum
 - Iron
 - Other
- Controls algae
 relatively
 inexpensively and can
 clarify water
- May not effect plants, particularly rooted ones
- Can have an effect on fish and other organisms

Biological Control

- Insects
 - Classical
 - Native
- Herbivorous Fish
 - Grass Carp
- Pathogens
 - Classical
 - Native

West Indian Manatee


Grass Carp

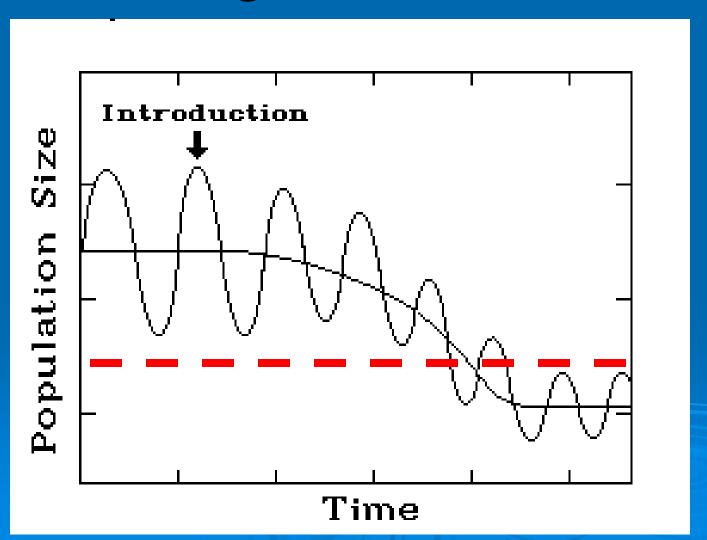
- Advantages
 - Effective
 - Inexpensive
 - Long-term

- Disadvantages
 - "All-or-none" response
 - Not selective
 - Cannot control feeding sites
 - Cannot stop fish
 - Difficult to contain
 - Reproduction?

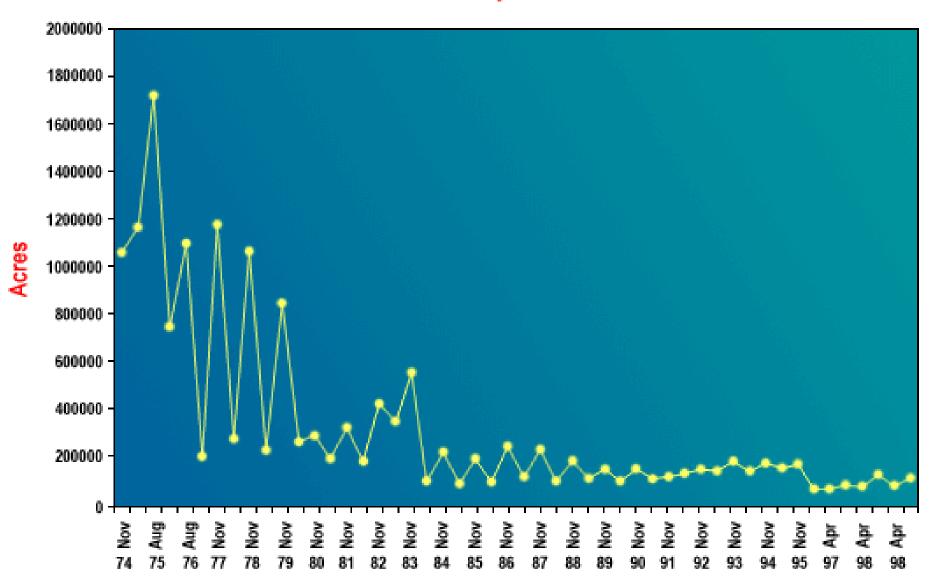
Triploid Grass Carp Prefer Other Species

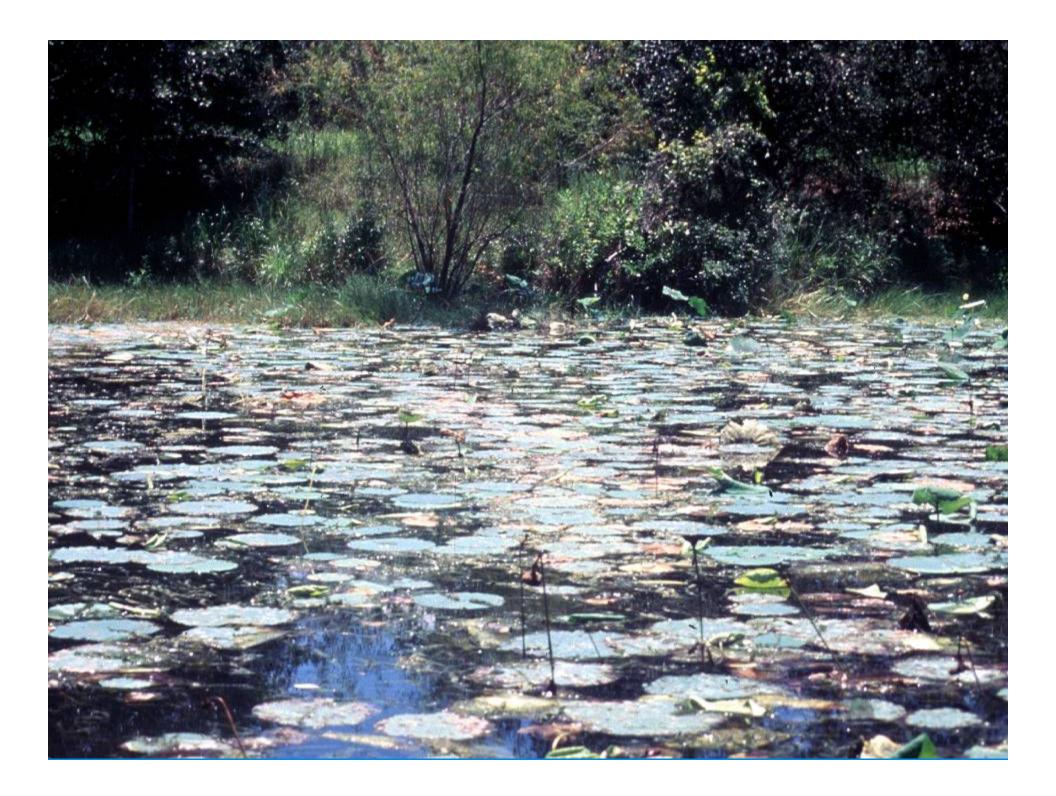
Classical Insect Control

- Advantages
 - Public perception
 - Low cost after R&D
 - Long-term

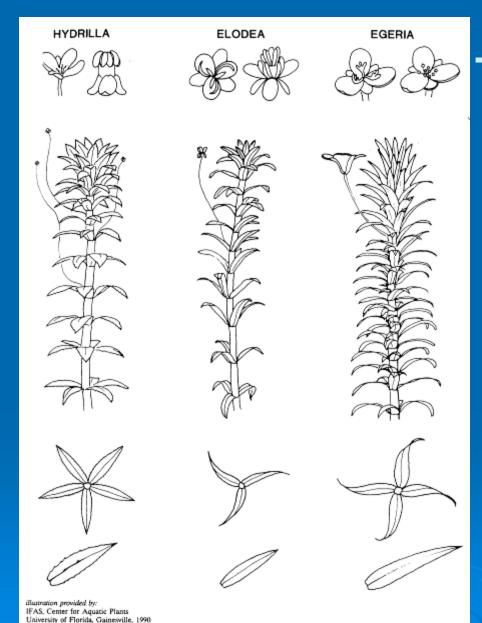


- Disadvantages
 - No agents for several target nonindigenous plants
 - Long time for R&D
 - Unpredictability of results


Agasicles hygrophila – Alligatorweed Flea Beetle

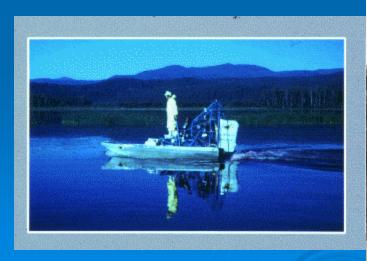

Goal of a Classical Insect Biological Control Program

Louisiana Waterhyacinth Data



Chemical control to submerged or floating leaf aquatics

- Contact
 - Complexed copper
 - Diquat
 - Endothall
- Systemic
 - 2,4-D
 - Fluridone
 - Glyphosate
 - Triclopyr


Target Species

- Proper identification
 of the target species of
 plant (or algae) is
 critical for optimal
 control
- For instance, herbicide selection:
 - Aquathol-K works well on hydrilla
 - Aquathol-K does not work well on egeria

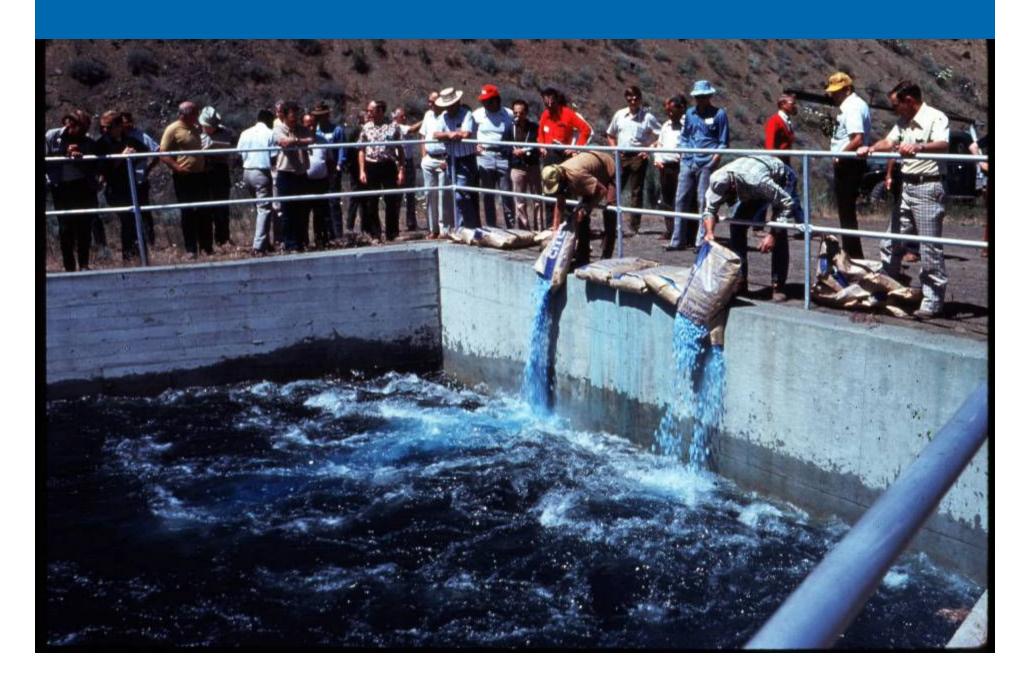
Submersed Application Techniques

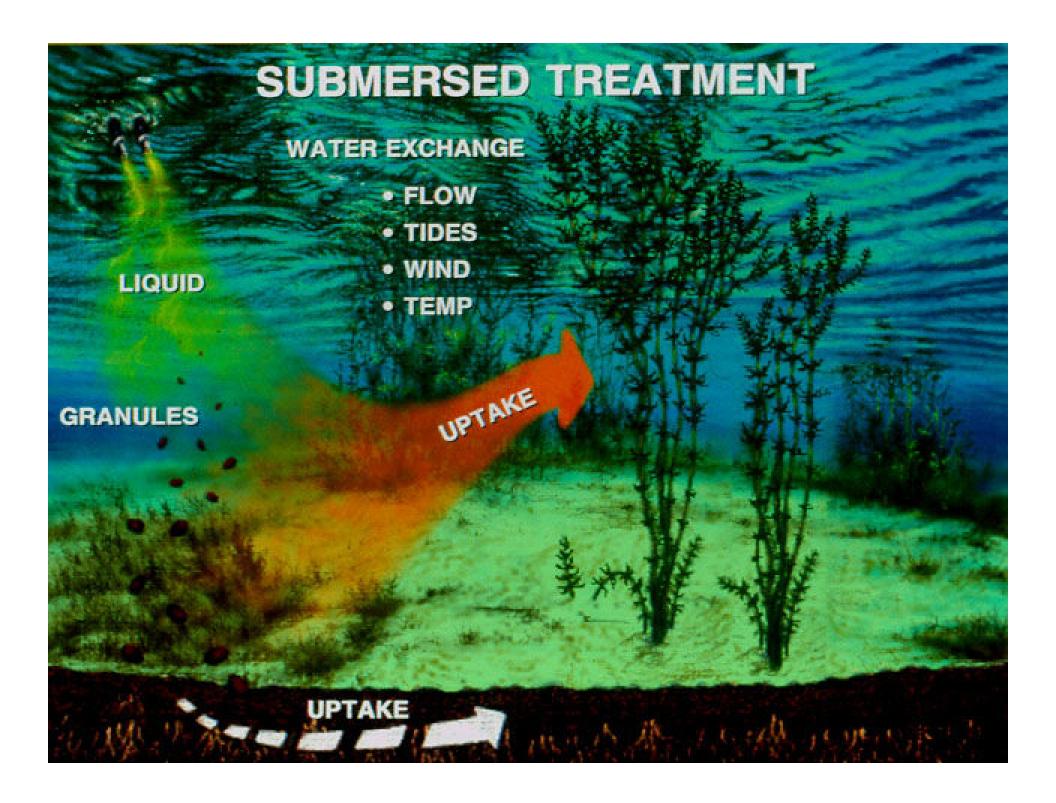
- Helicopter, Boat, Airboat
- Surface spray,
 Subsurface injection,
 granular spreader


Aquatic Herbicides

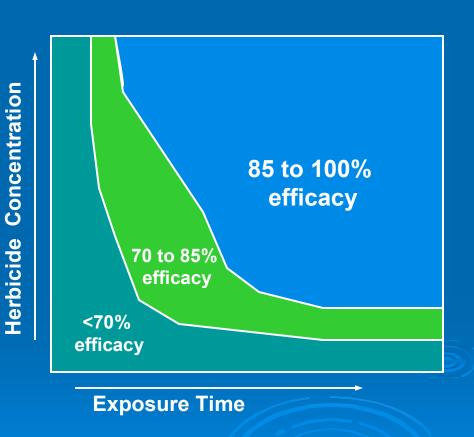
Read and follow the label!

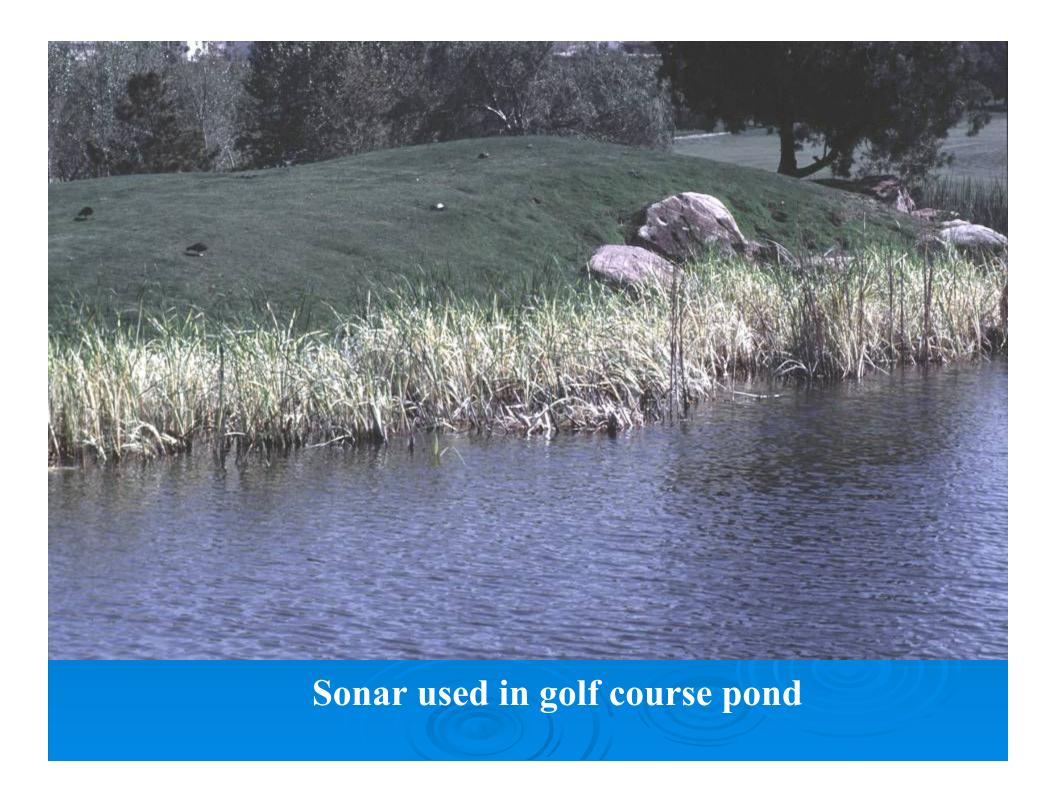
Check with Ag
Commissioner for
local use restrictions.




Airplane

Airboat


Adding Copper Sulfate to an Irrigation Canal


Submersed Plants: Dose & Exposure

- Herbicide efficacy and selectivity dependent on dose and length of exposure to target plant
- Relationships identified for hydrilla and milfoil
 - 2,4-D
 - Endothall
 - Fluridone
 - Triclopyr

Herbicides Used for Submersed Weed Control in Lakes and Reservoirs

Herbicide	Uptake	Half-life (days)	Use
Diquat	FAST	1-7	Spot applications
Copper	FAST	1-5	Spot applications
Endothall	Fast	4-7	Spot applications
Triclopyr	Fast	1-4	Spot applications
Fluridone	Slow	20-90	Only large areas, except for pelleted formulation

Management Goals and Plans

- •The question:
 - "What's the best method to control plant X?

 The best method depends on your management goals and your acceptable economic, environmental, and regulatory limitations

Example of Goals and Management Selection

Target Plant	Limitation	Technique
Eurasian watermilfoil in a small farm pond with ability to drain and add water	Funds	Drawdown or backhoe
	Maintain plant diversity	Triclopyr
	No fishing restriction	Fluridone (SONAR)
	Fish production pond	Shading

Summary of biological management methods for aquatic plants.

Management Method	Description	Advantages	Disadvantages	Systems where used effectively	Plant species response
Grass Carp / White Amur	Herbivorous Fish	Long-term (decades), relatively inexpensive	Cannot control feeding sites, difficult to contain in water body, tendency for "all or none" community response, persistent	Isolated water bodies, effective against hydrilla and other preferred species. Operational.	Fish have strong preference for hydrilla and some native plants, avoid Eurasian watermilfoil, generally do not prefer floating plants
<i>Neochetina</i> spp.	Waterhyacinth weevils	Species selective	Not effective in reducing areal coverage in many situations	Released in Florida, Gulf Coast states. (Developmental)	Leaf scars, some reduction in growth
<i>Hydrellia</i> spp. <i>Bagous</i> spp.	Hydrilla fly, hydrilla stem weevil	Species Selective	Has not yet been established	Released in Florida, Alabama, Texas. (Research)	Limited
Euhrychiopsis lecontei and other native insects	Weevil - native or naturalized	Already established in U.S.	Less selective, currently under R&D	Currently under study in Vermont, Minnesota (Research)	Plants loose buoyancy, weevil interferes with transfer of carbohydrates
Mycoleptodiscus terrestris (Mt)	Fungal pathogen; acts as a contact bioherbicide	Low dispersion, fairly broad spectrum	Expense, cross- contamination, inconsistent viability and virulence of formulation	Under R&D for both Eurasian watermilfoil and hydrilla	"Contact Bioherbicide", plants rapidly fall apart, but regrow from roots
Native Plant Community Restoration	Planting of desirable native plant species or community	Provides habitat, may slow reinvasion or initial invasion	Expensive, techniques still under development	Under R&D around the country	Native plants provide ecosystem benefits, slow invasion

Use suggestions for US Environmental Protection Agency-approved aquatic herbicides.

Compound	Exposure Time (Water)	Advantages	Disadvantages	Systems where used effectively	Plant species response
Complexed Copper	Intermediate (18-72 hours)	Inexpensive, rapid action, approved for drinking water	Does not biodegrade, but biologically inactive in sediments	Lakes as algicide, herbicide in higher exchange areas	Broad-spectrum, acts in 7-10 days or up to 4-6 weeks
2,4 -D	Intermediate (18-72 hours)	Inexpensive, systemic	Public perception	Waterhyacinth and Eurasian watermilfoil control, Lakes and slow- flow areas, purple	Selective to broad- leaves, acts in 5-7 days up to 2 weeks
Diquat	Short (12-36 hours)	Rapid action, limited drift	Does not affect underground portions	Shoreline, localized treatments, higher exchange rate areas	Broad-spectrum, acts in 7 days
Endothall	Short (12-36 hours)	Rapid action, limited drift	Does not affect underground portions	Shoreline, localized treatments, higher exchange rate areas	Broad spectrum, acts in 7-14 days
Fluridone	Very long (30-60 days)	Very low dosage required, few label restrictions, systemic	Very long contact period	Small lakes, slow flowing systems	Broad spectrum, acts in 30-90 days
Glyphosate	Not Applicable	Widely used, few label restrictions, systemic	Very slow action, no submersed control	Nature preserves and refuges; Emergent and floating-leaved plants only	Broad spectrum, acts in 7-10 days, up to 4 weeks
Triclopyr	Intermediate (12-60 hours)	Selective, systemic	Not currently labeled for general aquatic use	Lakes and slow-flow areas, purple loosestrife	Selective to broad- leaves, acts in 5-7 days, up to 2 weeks

Characteristics of U.S. Environmental Protection Agency-approved aquatic herbicides.

Compound	Trade Name	Company	Formulation; Contact vs. Systemic	Mode of Action	Bluegill 96 hr. LC ₅₀ (mg/L)
Complexed Copper	Cutrine-Plus Komeen Koplex K-Tea	Applied Biochemists (Cutrine) Griffin Corporation	Various complexing agents with copper, superior to CuSO ₄ Systemic	Plant cell toxicant	1250
2,4 -D	Aqua-Kleen Weedar-64 Wee-Rhap A-6D Several Others	Applied Biochemists Rhone-Poulenc Inter-Ag	BEE salt DMA liquid IEE liquid Systemic	Selective plant- growth regulator	1.1-1.3 123-230
Diquat	Reward	Zeneca	Liquid Contact	Disrupts plant cell membrane integrity	10-140
Endothall	Aquathol K Hydrothal 191 Aquathol granular	Elf Atochem (All Formulations)	Liquid or granular Contact	Inactivates plant protein synthesis	125 0.06-0.2
Fluridone	Sonar AS Sonar SRP	SePRO	Liquid or granular Systemic	Disrupts carotenoid synthesis, causing bleaching of chlorophyll	9-12.5
Glyphosate	Rodeo	Monsanto	Liquid Systemic	Disrupts synthesis of phenylalanine	4.2-14
Triclopyr	Garlon 3A (EUP) Renovate (EUP)	SePRO	Liquid Systemic	Selective plant growth regulator	148

Application restrictions of US Environmental Protection Agency-approved aquatic herbicides.

Compound	Persistence (half-life, in days)	Maximum Application Rate	Maximum water concentration	Safety Factor	Application Notes	WES Recommended for
Complexed Copper	3	1.5 gal/ft/acre	1.0 mg/L	>50	Algicide / Herbicide	Hydrilla, other submersed spp.
2,4 -D	7.5	0.5 gal/acre	2.0 mg/L	>25	Some formulations for special permits only	Eurasian watermilfoil, water-hyacinth, and others
Diquat	1-7	2 gal/acre	2 mg/L	5	Binds with particles (suspended solids) in water	All
Endothall	4-7	13 gal/acre	5.0 mg/L	>10 (Aquathol) <1.0 (Hydrothal)	Fish are sensitive to Hydrothal 191 - over 1 mg/L may cause fish kill	All submersed spp.
Fluridone	21	1.1 qt/acre	0.15 mg/L (150 ppb)	>20	Applications have been successful below 10 ppb	Most submersed spp.
Glyphosate	14	2 gal/acre	0.2 mg/L	>20	Aerial portions only - not for submersed plants	Most emergent and floating spp.
Triclopyr	na	na	2.5 mg/L	>50	EUP/Special Needs only - US EPA label expected in 1997	Eurasian watermilfoil, water-hyacinth, others

Characteristics of physical management techniques.

Management Method	Description	Advantages	Disadvantages	Systems where used effectively	Plant Species Response
Dredging/ Sediment Removal	Use mechanical sediment dredge to remove sediments, deepen water	Creates deeper water, very long- term results	Very expensive, must deal with dredge sediment	Shallow ponds and lakes, particularly those filled in by sedimentation	Often creates large usable areas of lake, not selective
Drawdown	"De-water" a lake or river for an extended period of time	Inexpensive, very effective, moderate-term	Can have severe environmental impacts, severe recreational/ riparian user effects	Only useful for manmade lakes or regulated rivers with a dam or water control structure	Selective based on perennation strategy; effective on evergreen perennials, less effective on herbaceous perennials
Benthic Barrier	Use natural or synthetic materials to cover plants	Direct and effective, may last several seasons	Expensive and small- scale, nonselective	Around docks, boat launches, swimming areas, and other small, intensive use areas	Nonselective, plant mortality within one month underneath barrier
Shading / Light Attenuation	Reduce light levels by one of several means: dyes, shade cloth, plant trees (rivers)	Generally inexpensive, effective	Nonselective, controls all plants, may not be aesthetically pleasing	Smaller ponds, man- made waterbodies, small streams	Nonselective, but may be long-term
Nutrient Inactivation	Inactivate phosphorus (in particular) using alum	Theoretically possible	Impractical for rooted plants limited by nitrogen	Most useful for controlling phytoplankton by inactivating water column P	Variable

Characteristics of mechanical management techniques.

Management Method	Description	Advantages	Disadvantages	Systems where used effectively	Plant species response
Hand- Cutting/ Pulling	Direct hand pulling or use of hand tools	Low-technology, affordable, can be selective	Labor-intensive, cost is labor-based	Most of the undeveloped world, volunteer labor pools	Very effective in very localized areas
Cutting	Cut weeds with mechanical device (typically boat-mounted sickle bar) without collection	More rapid than harvesting	Large mats of cut weeds may become a health and environmental problem, may spread infestation	Heavily-infested systems	Nonselective, short- term
Harvesting (Cut and Remove)	Mechanical cutting with plant removal	Removes plant biomass	Slower and more expensive than cutting; resuspension of sediments	Widespread use with chronic plant problems	Like cutting, it is cosmetic, non-selective short-term
Grinder or "Juicer " (Cut and Grind)	Mechanical cutting with grinding of plant material and in-lake disposal	Immediate relief of plant nuisance, no disposal	Resuspension of sediments, decomposition of plants in lake, floating plant material	Useful for chronic plant problems where disposal of plants is problematic	Like cutting and harvesting, it is cosmetic, non-selective short-term
Diver-Operated Suction Harvester	Vacuum lift used to remove plant stems, roots, leaves, sediment left in place	Moderately selective (based on visibility and operator), longer-term	Slow and cost-intensive	Useful for smaller nuisance plant populations in which plant density is moderate	Typically have minimal regrowth for Eurasian watermilfoil; not effective for tubersetting hydrilla
Rotovating	Cultivator on long arm for tilling aquatic sediments	Disrupts Eurasian watermilfoil stem bases, intermediate- term results	May spread large numbers of fragments; resuspension of sediments	Used extensively in the Pacific Northwest and British Columbia, with mixed results	Effective in disrupting Eurasian watermilfoil dense stands; not selective and only intermediate-term